Conditions

5) let $A=\left(\begin{array}{ll}2 & 1\end{array}\right)$
(1 14) find all the minors, co factors and the inverse of the given matrices
(-3 25)
Solution

Consider matrix:
$A=\left(\begin{array}{ccc}2 & 1 & 0 \\ 1 & 1 & 4 \\ -3 & 2 & 5\end{array}\right)$
Let's find all minors:
$M_{11}=\left|\begin{array}{ll}1 & 4 \\ 2 & 5\end{array}\right|=5-8=-3$
$M_{12}=\left|\begin{array}{cc}1 & 4 \\ -3 & 5\end{array}\right|=5+12=17$
$M_{13}=\left|\begin{array}{cc}1 & 1 \\ -3 & 2\end{array}\right|=2+3=5$
$M_{21}=\left|\begin{array}{ll}1 & 0 \\ 2 & 5\end{array}\right|=5-0=5$
$M_{22}=\left|\begin{array}{cc}2 & 0 \\ -3 & 5\end{array}\right|=10-0=10$
$M_{23}=\left|\begin{array}{cc}2 & 1 \\ -3 & 5\end{array}\right|=10+3=13$
$M_{31}=\left|\begin{array}{ll}1 & 0 \\ 1 & 4\end{array}\right|=4-0=4$
$M_{32}=\left|\begin{array}{ll}2 & 0 \\ 1 & 4\end{array}\right|=8-0=8$
$M_{33}=\left|\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right|=2-1=1$
Now it's time for cofactors. As we know:
$A_{i j}=(-1)^{i+j} M_{i j}$
That's why:
$A_{11}=-3$
$A_{12}=-17$
$A_{13}=5$
$A_{21}=-5$
$A_{22}=10$
$A_{23}=-13$
$A_{31}=4$
$A_{32}=-8$
$A_{33}=1$

Now let's construct the inverse of matrix A. First of all we must construct the cofactor matrix:
$A_{C}=\left(\begin{array}{ccc}-3 & -17 & 5 \\ -5 & 10 & -13 \\ 4 & -8 & 1\end{array}\right)$
Then transpose it:
$A_{C}{ }^{T}=\left(\begin{array}{ccc}-3 & -5 & 4 \\ -17 & 10 & -8 \\ 5 & -13 & 1\end{array}\right)$
And in the end, divide this on $\operatorname{det} A$:
$A^{-1}=\frac{1}{\operatorname{det} A} A_{C}{ }^{T}$
$\operatorname{det} A=\operatorname{det}\left(\begin{array}{ccc}2 & 1 & 0 \\ 1 & 1 & 4 \\ -3 & 2 & 5\end{array}\right)=10-12-0-0-16-5=-23$
$A^{-1}=\frac{1}{\operatorname{det} A} A_{C}{ }^{T}=\left(\begin{array}{ccc}\frac{3}{23} & \frac{5}{23} & -\frac{4}{23} \\ \frac{17}{23} & -\frac{10}{23} & -\frac{8}{23} \\ -\frac{5}{23} & \frac{13}{23} & -\frac{1}{23}\end{array}\right)$

