

Point $A=$ top of the building.
Two observers are at point C and D. We have to find the distance $C D$ which is ' x '. Angle of depressions are drawn at point A . Their alternate angles are at point C and D .

Now consider two right angled triangles i.e. $\triangle A B C$ and $\triangle A B D$.

$\triangle \mathrm{ABC}$

$\tan \left(54^{\circ}\right)=60 / y$
$\Rightarrow \mathrm{y}=60 / \tan \left(54^{\circ}\right)$
$\Rightarrow \mathrm{y}=43.6 \mathrm{ft}$

$\triangle \mathrm{ABD}$

$\tan \left(24^{\circ}\right)=60 /(x+y)$
$\Rightarrow(x+y)=60 / \tan \left(24^{\circ}\right)$
$\Rightarrow(x+y)=134.76 \mathrm{ft}$.
Putting value of y from eq. (1), we get:
$\Rightarrow x=134.76-43.6$
$\Rightarrow x=91.16 \mathrm{ft}$ is the required answer.

