Prove that the line joining the mid points of the diagonals of a trapezium is parallel to the parallel sides and is equal to the half of their difference.

Since, AB || DC and transversal AC cuts then at A and C respectively.

 $\therefore \angle 1 = \angle 2$ (Alternate angles)

Now, In \triangle APR and \triangle DPC,

- $\angle 1 = \angle 2$
- AP = CP (P is mid point of AC)

 $\angle 3 = \angle 4$ (Vertically opposite angles)

- $\therefore \Delta APR \cong \Delta DPC$
- \Rightarrow AR = DC and PR = DP

In ΔDRB , P and Q are the mid-points of sides DR and DB respectively.

- \therefore PQ || RB
- \Rightarrow PQ || AB
- \Rightarrow PQ || AB and DC

Again P and Q are the mid-points of sides DR and DB respectively.

$$\therefore PQ = \frac{1}{2}RB$$

$$\Rightarrow PQ = \frac{1}{2}(AB - AR)$$

$$\Rightarrow PQ = \frac{1}{2}(AB - DC)$$