Conditions

show that the area of the triangle formed by the points $(x 1, y 1, z 1),(x 2, y 2, z 2)$ and the origin is $1 / 2$ sqrt((y1z2-y2z1)2+(z1x2-z2x1)2+(x1y2-x2y1)2)

Solution

We must find the area of the triangle, which has 3 top points:
$A=\left(x_{1}, y_{1}, z_{1}\right), B=\left(x_{2}, y_{2}, z_{2}\right), C=(0,0,0)$
As it known, there is a formula to find the area of triangle using coordinates of the tops:
$S=\sqrt{S_{x}^{2}+S_{y}^{2}+S_{z}^{2}}$
$S_{x}=\frac{1}{2}\left|\begin{array}{ll}y_{B}-y_{A} & z_{B}-z_{A} \\ y_{C}-y_{A} & z_{C}-z_{A}\end{array}\right|=\frac{1}{2}\left|\begin{array}{ccc}1 & y_{A} & z_{A} \\ 1 & y_{B} & z_{B} \\ 1 & y_{C} & z_{C}\end{array}\right|$
$S_{y}=\frac{1}{2}\left|\begin{array}{lll}x_{A} & 1 & z_{A} \\ x_{B} & 1 & z_{B} \\ x_{C} & 1 & z_{C}\end{array}\right|, \quad S_{z}=\frac{1}{2}\left|\begin{array}{lll}x_{A} & y_{A} & 1 \\ x_{B} & y_{B} & 1 \\ x_{C} & y_{C} & 1\end{array}\right|$
Where $\mathbf{r}_{B}\left(x_{B}, y_{B}, z_{B}\right), \mathbf{r}_{C}\left(x_{C}, y_{C}, z_{C}\right) \mathbf{r}_{A}\left(x_{A}, y_{A}, z_{A}\right)$ - top points.
So,
$S_{A}=\frac{1}{2}\left|\begin{array}{ccc}1 & y_{1} & z_{1} \\ 1 & y_{2} & z_{2} \\ 1 & 0 & 0\end{array}\right|=\frac{1}{2}\left(0+y_{1} z_{2}+0-y_{2} z_{1}-0-0\right)=\frac{1}{2}\left(y_{1} z_{2}-y_{2} z_{1}\right)$
$S_{B}=\frac{1}{2}\left|\begin{array}{ccc}x_{1} & 1 & z_{1} \\ x_{2} & 1 & z_{2} \\ 0 & 1 & 0\end{array}\right|=\frac{1}{2}\left(0+z_{1} x_{2}+0-z_{2} x_{1}-0-0\right)=\frac{1}{2}\left(z_{1} x_{2}-z_{2} x_{1}\right)$
$S_{B}=\frac{1}{2}\left|\begin{array}{ccc}x_{1} & y_{1} & 1 \\ x_{2} & y_{2} & 1 \\ 0 & 0 & 1\end{array}\right|=\frac{1}{2}\left(0+x_{1} y_{2}+0-x_{2} y_{1}-0-0\right)=\frac{1}{2}\left(x_{1} y_{2}-x_{2} y_{1}\right)$

$$
\begin{aligned}
S=\sqrt{\frac{1}{4}\left(z_{1} x_{2}\right.}- & \left.z_{2} x_{1}\right)^{2}+\frac{1}{4}\left(z_{1} x_{2}-z_{2} x_{1}\right)^{2}+\frac{1}{4}\left(x_{1} y_{2}-x_{2} y_{1}\right)^{2} \\
& =\frac{1}{2} \sqrt{\left(z_{1} x_{2}-z_{2} x_{1}\right)^{2}+\left(z_{1} x_{2}-z_{2} x_{1}\right)^{2}+\left(x_{1} y_{2}-x_{2} y_{1}\right)^{2}}
\end{aligned}
$$

Q.E.D.

