derivative of $x^{\wedge} \ln x$

Solution:

$$
\begin{gathered}
\left(x^{\ln x}\right)^{\prime}=\left(e^{\ln \left(x^{\ln x}\right)}\right)^{\prime}=e^{\ln \left(x^{\ln x}\right)} * \ln e *\left(\ln \left(x^{\ln x}\right)\right)^{\prime}=x^{\ln x} *(\ln x * \ln x)^{\prime}=x^{\ln x} *\left((\ln x)^{2}\right)^{\prime} \\
=x^{\ln x} * 2 \ln x *(\ln x)^{\prime}=x^{\ln x} * 2 \ln x * \frac{1}{x}=x^{\ln x-1} * 2 \ln x
\end{gathered}
$$

Answer: $x^{\ln x-1} * 2 \ln x$

