Task:

You want to enlarge a photo to make a poster. The poster will have the same length-width ratio as the photo. The photo is 7 inches by 5 inches. You want the poster to have an area that is at least 250% as large as there are of the photo. Find the minimum dimensions of the poster, round the dimensions to the nearest tenth of an inch.

Solution:

Area of the photo:

7 inches x 5 inches=35 square inches
The poster is 250% larger, area of the poster:
2.5×35 square inches=70 square inches
Area of the poster equals the multiplication of its dimensions a and b :
a inches $\mathrm{x} b$ inches $=70$ square inches
$a=70 / b$
To find the minimum dimensions we should find the minimum of the function:
$y=a+b=\frac{70}{b}+b, b>0, y^{\prime}=1-\frac{70}{b^{2}}$

In the interval $b>0$ there is a minimum:
$1-\frac{70}{b^{2}}=0, b>0$
$b^{2}=70$
$b=\sqrt{70}=8.4$ inch
$a=\frac{70}{b}=\frac{70}{\sqrt{70}}=8.4$ inch
Control: $a \cdot b=70.56$ square inches $\delta=\frac{a \cdot b-70}{70}=0.008$
Answer: $b=8.4$ inch, $a=8.4$ inch

