Task:

Two trains 210 m and 240 m long run on parallel tracks in the same direction. Speed of the first train is 90 miles/h and the second train crosses the first train in 36 s . Find the time taken by them to cross in the opposite direction.

Solution:

Find:
t_{2}

Given:

$s_{1}-s_{2}=30 m=0.019$ miles
$v_{1}=$ const $=90 \frac{\text { miles }}{\text { hour }}$
$v_{2}=$ const
$t=36 s=0.01$ hour
$s_{1}=v_{1} \cdot t=0.9$ miles
$s_{2}=v_{2} \cdot t$
$s_{2}=s_{1}-0.019$ miles
$v_{2}=\frac{s_{2}}{t}=\frac{s_{1}-0.019 \text { miles }}{t}=88.136 \frac{\mathrm{miles}}{\text { hour }}$
Since we don't know the initial distance between the trains when they move in the opposite direction (suppose that the initial distance between them in the opposite direction equals
$\left.s_{1}-s_{2}=30 \mathrm{~m}=0.019 \mathrm{miles}\right)$:
$v_{1} \cdot t_{2}+v_{2} \cdot t_{2}=0.019$ miles
$t_{2}=\frac{0.019 \text { miles }}{v_{1}+v_{2}}=0.384 \mathrm{~s}$

Answer:

$t_{2}=0.384 \mathrm{~s}$

