Conditions

$f(x)=8 \times 2+8 x-12$. How do you convert in vertex form

Solution

A quadratic function can be expressed in three formats:

- $f(x)=a x^{2}+b x+c$ is called the standard form,
- $\quad f(x)=a\left(x-x_{1}\right)\left(x-x_{2}\right)$ is called the factored form, where x_{1} and x_{2} are the roots of the quadratic equation, it is used in logistic map
 coordinates of the vertex, respectively.
To convert the standard form to factored form, one needs only the quadratic formula to determine the two roots x_{1} and x_{2}. To convert the standard form to vertex form, one needs a process called completing the square. To convert the factored form (or vertex form) to standard form, one needs to multiply, expand and/or distribute the factors.

Let's complete the square:
For this let's find the coordinates of the vertex. The vertex of the parabola in the vertex form is

$$
\left(-\frac{b}{2 a},-\frac{\Delta}{4 a}\right)
$$

So,
$f(x)=a\left(x-\frac{8}{16}\right)^{2}-\frac{64+4 \cdot 8 \cdot 12}{4 \cdot 8}=a\left(x-\frac{1}{2}\right)^{2}-14$
It's obvious, that a is 8 here:
$8\left(x-\frac{1}{2}\right)^{2}-14=8\left(x^{2}-x+\frac{1}{4}\right)-14=8 x^{2}-8 x+2-14=f(x)$

Answer: The vertex form:

$f(x)=a\left(x-\frac{1}{2}\right)^{2}-14$

