1. How do you Math problems like $3 y^{2}-15 y-252$ or $2 x^{2}+11 x+12$ or $x w-y w-x z-y z$ by factoring the polynomials?

Explanation

First problem $3 y^{2}-15 y-252$
First we will notice that we can factor a 3 out of every term.
$3\left(y^{2}-5 y-84\right)$
We can always check our factoring by multiplying the terms back out to make sure we get the original polynomial. Here is the form of a quadratic trinomial with argument $y\left[\left(y^{2}-5 y-\right.\right.$ 84)]. To solve this problem we multiplying a and $c(a=1, c=-84)$. We get (1) $(-84)=-84$

factor pairs	the differences
1,84	$84-1=83$
2,42	$42-2=40$
3,28	$28-3=25$
4,21	$21-4=17$
6,14	$14-6=8$
7,12	$12-7=5$

We can subtract the pairs to find the differences. If there is a pair of factors with a difference of 5 , then we can factor the quadratic. Now that we have factor pair (with the larger number having the "minus" sign), factor the quadratic:

	y	-7
y	y^{2}	$-7 y$
12	$12 y$	-84

$3\left(y^{2}-12 y+7 y-84\right)=3(y(y+7)-12(y+7))=3((y+7)(y-12))$
Also we can solve a quadratic equation $y^{2}-5 y-84$ in the form: $a y^{2}+b y+c$

$$
\begin{gathered}
y_{1,2}=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}=\frac{5 \pm \sqrt{25+4 \cdot 84}}{2}=\frac{5 \pm 19}{2} \\
y_{1}=12, y_{2}=-7
\end{gathered}
$$

$3 y^{2}-15 y-252=3((y-12)(y+7))$

1. Another math problem $2 x^{2}+11 x+12$ also can be solved by $a c$-method.

Multiplying a and $c(a=2, c=12)$. We get(2)(12) $=24$.

factor pairs	the sum
8,3	$8+3=11$

Substitute the obtained values: $2 x^{2}+8 x+3 x+12$. Apply the method of grouping
$2 x^{2}+8 x+3 x+12=2 x(x+4)+3(x+4)=(x+4)(2 x+3)$

$$
x_{1}=-4, x_{2}=-\frac{3}{2}
$$

Similarly, the problem can be solved by finding the roots of a quadratic equation.
2. Math problem $x w-y w-x z-y z$. Apply the method of grouping $x w-y w-x z-y z=w(x-y)-z(x+y)$ can't be factored. $x w-y w-x z+y z$ can be factoring $x w-y w-x z+y z=w(x-y)-z(x-y)=$ $(w-z)(x-y)$

