Question 1. Let G be a group, let H be a normal subgroup of G. Prove that if a is an element of G, then the order of $H a$ in G / H is a divisor of order of a in G.

Solution. Suppose the order of a in G is finite and equals $n \in \mathbb{N}$. So, $a^{n}=1$ in G. Then in the factor group G / H we have

$$
(H a)^{n}=H a^{n}=H \cdot 1=H,
$$

which is the identity of G / H. Therefore, the order of $H a$ in G / H, which is the smallest $k \in \mathbb{N}$ such that $(H a)^{k}=H$, divides n, i. e. the order of a.

If the order of a is infinite, the order of $H a$ however can be finite. For example, take $G=\mathbb{Z}, H=2 \mathbb{Z}$ and $a=2$. Then $H a=H$, so $H a$ has the order 1 in G / H, but $n a \neq 0$ for all $n \in \mathbb{N}, n \neq 0$.

