Conditions

what is the integral of $1 /\left(\operatorname{sqrt}\left(-x^{\wedge}(2)-6 x-5\right)\right)$ and \arctan sqrt(x)? thank you!

Solution

1.

$\int \frac{d x}{\sqrt{-x^{2}-6 x-5}}=\int \frac{d x}{4-(x+3)^{2}}=\left[\begin{array}{c}u=x+3 \\ d u=d x\end{array}\right]=\int \frac{d u}{4-u^{2}}=\int \frac{d u}{2 \sqrt{1-\frac{u^{2}}{4}}}=\left[\begin{array}{c}s=\frac{u}{2} \\ d u=d s\end{array}\right]=$
$=\int \frac{d s}{\sqrt{1-s^{2}}}=\sin ^{-1} s+c=\sin ^{-1}\left(\frac{x+3}{2}\right)+c=\arcsin \left(\frac{x+3}{2}\right)+c$
2.

$$
\begin{aligned}
& \int \arctan \sqrt{x} d x=\left[\begin{array}{c}
u=\sqrt{x} \\
d u=\frac{d x}{2 \sqrt{x}}
\end{array}\right]=\int u \arctan u d u=\left[\begin{array}{cc}
f=\arctan u & d f=\frac{d u}{u^{2}+1} \\
g=\frac{u^{2}}{2} & d g=u d u
\end{array}\right]= \\
& =u^{2} \arctan u-2 \int \frac{u^{2}}{2\left(u^{2}+1\right)} d u=u^{2} \arctan u-\int\left(1-\frac{1}{\left(u^{2}+1\right)}\right) d u \\
& =u^{2} \arctan u+\arctan u-u+c=x \arctan \sqrt{x}+\arctan \sqrt{x}-\sqrt{x}+c \\
& =(x+1) \arctan \sqrt{x}-\sqrt{x}+c
\end{aligned}
$$

