

Conditions

If f is continuous on $[a, b]$ and integral a to b of $f(x)g(x)dx=0$ for all continuous functions g on $[a, b]$ then f is identically equal to 0 on $[a, b]$

Solution

This is not true. Consider the counterexample:

$$f(x) = \sin x$$

$$g(x) = 1$$

$$x \in [a, b] = [0, 2\pi]$$

Then f, g are continuous on $[a, b]$ and

$$\int_0^{2\pi} \sin x \, dx = 0$$

but

$$f(x) = \sin x \neq 0 \quad \forall x \in [0, 2\pi]$$