

Question 1. Prove that the set of all the non-zero elements in a field is a multiplicative group. Use Lagrange's Theorem to prove that in a finite field of m elements $x^m = x$ for every x .

Solution. Let \mathbb{F} be a field and \mathbb{F}^* denote the set of all non-zero elements of \mathbb{F} . Prove that \mathbb{F}^* is a multiplicative group. Since 1 is assumed to be distinct from 0, then $1 \in \mathbb{F}^*$ and it is the identity of \mathbb{F}^* , because

$$1 \cdot a = a \cdot 1 = a$$

for any $a \in \mathbb{F}$. Furthermore, if $a \neq 0$ and $b \neq 0$, then $ab \neq 0$ since otherwise we could multiply ab on b^{-1} (it exists, because $b \neq 0$) and get $a = 0$, which is not true. So, \mathbb{F} is closed under multiplication. Finally, by one of the field axioms, any non-zero a has the multiplicative inverse, i. e. an element a^{-1} , satisfying

$$aa^{-1} = a^{-1}a = 1.$$

This means that \mathbb{F} is closed under taking multiplicative inverses. Thus, \mathbb{F} is a (commutative) group under multiplication.

If \mathbb{F} consists of m elements, then \mathbb{F}^* has the order $m - 1$, because $\mathbb{F}^* = \mathbb{F} \setminus \{0\}$. By Lagrange theorem, the order of any element $a \in \mathbb{F}^*$ divides the order of \mathbb{F}^* , which is $m - 1$. Therefore, $a^{m-1} = 1$ for any $a \in \mathbb{F}^*$. Multiplying both sides by a , we obtain $a^m = a$ for all $a \in \mathbb{F}^*$. But this is also true for $a = 0$, so $a^m = a$ for any $a \in \mathbb{F}$. \square