Equation $\frac{d y}{d x}=f(x, y)$ is homogeneous if the function $f(x, y)$ is homogeneous, that is $f(t x, t y)=f(x, y)$ for any number t .

$$
\left(x^{2}+x y\right) d y=\left(x^{2}+y^{2}\right) d x, \quad \frac{d y}{d x}=\frac{x^{2}+y^{2}}{x^{2}+x y}
$$

$f(t x, t y)=\frac{t^{2} x^{2}+t^{2} y^{2}}{t^{2} x^{2}+t^{2} x y}=\frac{x^{2}+y^{2}}{x^{2}+x y}=f(x, y)$ - equation is homogeneous.
Let $y=u x$, then $\frac{d y}{d x}=\frac{d u}{d x} x+u$ and $\frac{d y}{d x}=\frac{x^{2}+y^{2}}{x^{2}+x y}=\frac{x^{2}+u^{2} x^{2}}{x^{2}+u x}=\frac{1+u^{2}}{1+u}$
$\frac{d u}{d x} x+u=\frac{1+u^{2}}{1+u}, \quad \frac{d u}{d x} x=\frac{1+u^{2}}{1+u}-u=\frac{1-u}{1+u}, \quad \frac{d x}{x}=\frac{1+u}{1-u} d u$,
$\frac{d x}{x}=\frac{1-u+2 u}{1-u} d u, \quad \frac{d x}{x}=\left(1-2\left(1+\frac{1}{u-1}\right)\right) d u$
$\int \frac{d x}{x}=\int\left(1-2\left(1+\frac{1}{u-1}\right)\right) d u, \quad \ln (x)+c=-u-2 \ln (u-1)$,
$u=-\ln (A x)-2 \ln (u-1)=-\ln \left(A x(u-1)^{2}\right), A=e^{c}=$ const

$$
\frac{y}{x}=-\ln \left(A x\left(\frac{y}{x}-1\right)^{2}\right)
$$

