

Task:

Solve

$$2\cos^2\left(\frac{x}{3}\right) + 3\sin\left(\frac{x}{3}\right) - 3 = 0$$

Solution:

$$2\cos^2\left(\frac{x}{3}\right) + 3\sin\left(\frac{x}{3}\right) - 3 = 0$$

$$2\left(1 - \sin^2\left(\frac{x}{3}\right)\right) + 3\sin\left(\frac{x}{3}\right) - 3 = 0$$

$$-2\sin^2\left(\frac{x}{3}\right) + 3\sin\left(\frac{x}{3}\right) - 1 = 0$$

$$2\sin^2\left(\frac{x}{3}\right) - 3\sin\left(\frac{x}{3}\right) + 1 = 0$$

$$D = 9 - 2 * 4 = 1$$

$$\sin\left(\frac{x}{3}\right) = \frac{3 \pm 1}{4}$$

$$\begin{cases} \sin\left(\frac{x}{3}\right) = 1 \\ \sin\left(\frac{x}{3}\right) = \frac{1}{2} \end{cases} \Rightarrow \begin{cases} \frac{x}{3} = \frac{\pi}{2} + 2\pi n, \quad n \in \mathbb{Z} \\ \frac{x}{3} = \frac{\pi}{6} + 2\pi k, \quad k \in \mathbb{Z} \\ \frac{x}{3} = \frac{5\pi}{6} + 2\pi m, \quad m \in \mathbb{Z} \end{cases} \Rightarrow \begin{cases} x = \frac{3\pi}{2} + 6\pi n, \quad n \in \mathbb{Z} \\ x = \frac{\pi}{2} + 6\pi k, \quad k \in \mathbb{Z} \\ x = \frac{5\pi}{2} + 6\pi m, \quad m \in \mathbb{Z} \end{cases}$$

Answer: $\frac{\pi}{2} + 6\pi k, \quad \frac{3\pi}{2} + 6\pi n, \quad \frac{5\pi}{2} + 6\pi m ; \quad n, m, k \in \mathbb{Z}$