Problem:

I am looking for assistance in starting to solve this problem. Dont need the answer but a methodology for figuring it out on my own. A particle moves from right to left along the parabolic curve $y=$ square root of $-x$ in such a way that its x coordinates decreases at the rate of 4 meters per second. How fast is the angle of inclination in degrees of the line joining the particle to the origin changing when $x=-2$?

Solution:

According to the problem statement:

$$
\begin{equation*}
y=\sqrt{-x} \tag{1}
\end{equation*}
$$

And

$$
\begin{equation*}
v=\frac{d x}{d t}=-4 \mathrm{~m} / \mathrm{s} \tag{2}
\end{equation*}
$$

After differentiation of the first equation:

$$
\begin{equation*}
\frac{d y}{d x}=\operatorname{tg} \alpha=-\frac{1}{2 \sqrt{-x}} \tag{3}
\end{equation*}
$$

Where α-angle of inclination.
Differentiation of the equation (3) with respect to time t gives:

$$
\begin{align*}
& \frac{d(\operatorname{tg} \alpha)}{d t}=\frac{1}{\cos ^{2} \alpha} \frac{d \alpha}{d t}=-\frac{1}{4}(-x)^{-\frac{3}{2}} \frac{d x}{d t}=> \\
& \frac{d \alpha}{d t}=\frac{\cos ^{2} \alpha}{4}(-x)^{-\frac{3}{2}} v \tag{4}
\end{align*}
$$

From equation (3) we get:

$$
\cos ^{2} \alpha=\frac{1}{1+\operatorname{tg}^{2} \alpha}=\frac{1}{1+\frac{1}{-4 x}}=\frac{4 x}{4 x-1}
$$

Then equation (4):

$$
\frac{d \alpha}{d t}=\frac{x}{(4 x-1)}(-x)^{-\frac{3}{2} v}
$$

Since $x=-2$:

$$
\frac{d \alpha}{d t}=\frac{-2}{(4 *(-2)-1)}(2)^{-\frac{3}{2}} *(-4)=0.31 \frac{\mathrm{rad}}{\mathrm{~s}}=18 \frac{\text { degrees }}{\mathrm{s}}
$$

Answer: $\frac{d \alpha}{d t}=18 \frac{\text { degrees }}{s}$ (at point $\mathrm{x}=-2$).

