Conditions

two pipes running together can fill a cistern in $40 / 13$ mins. if one pipe takes 3 mins more than the other to fill the cistern, find the time in which each pipe would fill the cistern.

Solution

Let's the velocity of $1^{\text {st }}$ pipe is x, of $2^{\text {nd }}$ is y. Then:
$\left\{\begin{array}{l}\frac{1}{x+y}=\frac{40}{13} \\ \frac{1}{x}-\frac{1}{y}=3\end{array}\right.$
$\left\{\begin{array}{c}40(x+y)=13 \\ y-x=3 x y\end{array}\right.$
$x=\frac{y}{3 y+1}$
$40\left(\frac{y}{3 y+1}+y\right)=13$
$40\left(\frac{2 y+3 y^{2}}{3 y+1}\right)=13$
$120 y^{2}+80 y-39 y-13=0$
$120 y^{2}+41 y-13=0$
$D=1681+6240=7921$
$y=\frac{-41+89}{240}=0.2$
The negative value of y is rejected as velocity can't be negative.
$x=\frac{y}{3 y+1}=\frac{0.2}{0.6+1}=0.125$
$\frac{1}{x}=8$
$\frac{1}{y}=5$
Answer: One pipe fills a cistern in 5 min , the other pipe - in 8 min

