

Question 19264

Linearization of function at given point is the best linear approximation of this function. In geometric sense, this is approximation of function by a slope at given point. In terms of Taylor series, this is the expansion at given point, to terms of power of 1.

The general formula for Taylor expansion at point a is: $f(x) = f(a) + \sum_{k=1}^{\infty} f^{(k)}|_{x=a} \cdot (x-a)^k$.

$f^{(k)}$ denotes the k-th derivative, and $|_{x=a}$ denotes that this derivative is taken at point a.

Hence, $f(x) = \sqrt{x}$:

$$L(x) = \sqrt{a} + \frac{1}{2\sqrt{x}}|_{x=a} \cdot (x-a), \text{ so for } a=64, x=64.3 :$$

$$\sqrt{64.3} = 8 + \frac{1}{2\cdot 8} \cdot 0.3 = 8.019$$