Assume that all barrels of wine have precisely cylindrical shape of radius r and height h. The wine merchant prices each barrel by the length d of a dipstick that can be inserted diagonally through a hole in the center of the top disc of the barrel and that reaches the edge of the bottom. For a fixed length d , determine the ratio r / h that maximizes

Solution

First we have $d^{2}=r^{2}+h^{2}$, with d fixed, and so $r^{2}=d^{2}-h^{2}$.
Now the volume of a barrel will be

$$
V=\pi * r^{2} * h=\pi *\left(d^{2}-h^{2}\right) * h=\pi *\left(\left(d^{2}\right) * h-h^{3}\right) .
$$

Now differentiate V with respect to h and set equal to 0 to find the critical points:
$\frac{d V}{d h}=\pi *\left(d^{2}-3 * h^{2}\right)=0$ when $d^{2}=3 * h^{2}$.
Now $\frac{d}{d h}\left(\frac{d V}{d h}\right)=-6 \pi * h<0$ for any positive h, so by the second derivative test there is a maximum for V at the critical point obtained above.
So when $d^{2}=3 * h^{2}$ we have

$$
3 * h^{2}=r^{2}+h^{2} \rightarrow 2 * h^{2}=r^{2} \rightarrow 2=\left(\frac{r}{h}\right)^{2} \rightarrow \frac{r}{h}=\sqrt{2}
$$

