Conditions

Suppose p is a polynomial with n distinct real roots. Show that p^{\prime} has at least $n-1$ distinct real roots.

Solution

Let's use Rolle's Theorem. It claims that for differentiable functions with two points with an equal value, their derivative has a root between these points.

The polynomial is a differentiable function, and as we have n roots, so we have $n-1$ intervals, where at two distinct points we have equal values (zero, as they are roots).

We have the following $n-1$ intervals
$\left(a_{1}, a_{2}\right),\left(a_{2}, a_{3}\right), \ldots\left(a_{n-1}, a_{n}\right)$
$P\left(a_{1}\right)=P\left(\alpha_{2}\right)=\cdots=P\left(\alpha_{n}\right)=0$
In each interval by Rolle’s Theorem we have 1 root for derivative function. Totally - $\mathrm{n}-1$ roots. And the proof is done.
Q.E.D.

