Question 18748 Hi, the topic is Probability Density Function of a random variable.

For each of the following, find the constant c so that $\mathrm{p}(\mathrm{x})$ satisfies the condition of being a probability density function of a random variable X: I. $p(x)=c(2 / 3)^{x}, x \in N$ II. $p(x)=c x, x \in\{1,2,3,4,5,6\}$

I've been figuring this for couple of days. Solution. In fact, $p(x)$ is rarely called probability density function. It is just distribution of a r.v., $p(x)=P(X=x)$.
We are to verify two conditions: 1) $p(x) \geq 0$ and $\sum_{x \in N} p(x)=1$.So,
a) $c>0$ and $\sum_{x \in N} p(x)=c \sum_{x \in N}(2 / 3)^{x}=c \frac{2 / 3}{1 / 3}=2 c=1$, thus $c=1 / 2$. Remark: this is the case when $0 \notin N(2$ definitions of natural numbers are used in mathematics,), if $0 \in N$, then $\sum_{x \in N} p(x)=c \sum_{x \in N}(2 / 3)^{x}=3 c$, thus $c=1 / 3$.
b) $\sum_{x \in\{1,2,3,4,5,6\}} c x=c \frac{6 \cdot 7}{2}=21 c$, thus $c=1 / 21$.

