Conditions

Suppose p is a polynomial with n distict roots. show that p^{\prime} has $\mathrm{n}-1$ roots.
We have studied MVT and rolles theorem so i would think i need to use them to prove it?

Solution

Exactly! Here must be used the Rolle's Theorem. It claims us, that for differentiable function, which have 2 points with equal values on them, exist at least one point between, in which the derivative function's value is 0 .

More strict formulation:

If a real-valued function f is continuous on a closed interval $[a, b]$, differentiable on the open interval (a, b), and $f(a)=f(b)$, then there exists a c in the open interval (a, b) such that

$$
f^{\prime}(c)=0
$$

As we have n roots for our polynomial, and as polynomials in real are differentiable functions, we can say, that we have n values, where function has a 0 value (for us important, that these values are equal).

For n those points we have $n-1$ intervals, on the edges of which are our roots. Now in each of them let's use the Rolle's Theorem and we will get $n-1$ zeros for derivative function. And this means that each that point is a root for derivative function.
Q.E.D.

