A company manufacturers and sells x electronics drills per month. The monthly coast and price-demand equations are $C(x)=69000+40 x, p=190-\frac{x}{30}, 0 \leq$ $x \leq 5000$
(A) Find the production level that results in the maximum revenue
(B) Find the price that the company should charge for each drill in order to maximize profit.
(C) Suppose that a 5 dollar per drill tax is imposed. Determine the number of drills that should be produced and sold in order to maximize profit under this new circumstances

Solution:

(A) Revenue $p \cdot x=190 x-\frac{x^{2}}{30}$

$$
(p \cdot x)^{\prime}=190-\frac{x}{15}=0 \rightarrow x=2850
$$

Production level is 2850.
(B) Profit $=$ Revenue-Cost $=190 x-\frac{x^{2}}{30}-69000-40 x=-\frac{x^{2}}{30}+150 x-69000$

$$
\begin{gathered}
\frac{d\left(-\frac{x^{2}}{30}+150 x-69000\right)}{d x}=-\frac{x}{15}+150=0 \rightarrow x=2250 \\
p=190-\frac{2250}{30}=\$ 115
\end{gathered}
$$

Price is $\$ 115$.
(C) With $\$ 5$ tax the price-demand equation should be

$$
\begin{aligned}
& \qquad p=190-\frac{x}{30}+5 \\
& \text { Profit }=195 x-\frac{x^{2}}{30}-69000-40 x=-\frac{x^{2}}{30}+155 x-69000 \\
& \frac{d\left(-\frac{x^{2}}{30}+155 x-69000\right)}{d x}=-\frac{x}{15}+155=0 \rightarrow x=2325
\end{aligned}
$$

Number of drills is 2325 .

