Question

Square: $S_{1}=\left(\frac{50-x}{4}\right)^{2}$. Circle: $x=2 \pi r \Rightarrow r=\frac{x}{2 \pi} \Rightarrow S_{2}=\pi \cdot\left(\frac{x}{2 \pi}\right)^{2}=\frac{x^{2}}{4 \pi}$. Total area: $S=S_{1}+S_{2}=\left(\frac{50-x}{4}\right)^{2}+\frac{x^{2}}{4 \pi}$. We will find minimum area:
$S^{\prime}=-\frac{1}{4} \cdot 2 \cdot\left(\frac{50-x}{4}\right)+\frac{2 x}{4 \pi}=0 \Rightarrow 8 \frac{x(\pi+4)-50 \pi}{4 \pi}=0 \Rightarrow x=\frac{50 \pi}{\pi+4}$.
For square: $I=50-x \Rightarrow I=50-\frac{50 \pi}{\pi+4}=\frac{50 \pi+200-50 \pi}{\pi+4}=\frac{200}{\pi+4}$.
And we will graph this function:

As we see the maximum area is when $x=50$. So, the length of the square wire is 0 .
a) The length of wire for square is 0 .
b) The length of wire for square is $\frac{200}{\pi+4}$.

