Conditions

Suppose p is a polynomial with n distinct real roots. Show that p^{\prime} has at least $n-1$ distinct real roots.

Solution

This can be very easy proved by using Rolle's Theorem.
In calculus, Rolle's theorem essentially states that a differentiable function which attains equal values at two distinct points must have a point somewhere between them where the first derivative (the slope of the tangent line to the graph of the function) is zero.

The polynomial is a differentiable function, and as we have n roots, so we have $\mathrm{n}-1$ intervals, where at two distinct points we have equal values (zero, as they are roots).

For example, let's our roots are (ranged from smallest value to largest):
$X_{1,} X_{2 p \times n j} X_{n}$
Then we have following intervals:
$\left(x_{1}, x_{2}\right),\left(x_{2}, x_{3}\right), \ldots\left(x_{n-1}, x_{n}\right)$
As we see - the amount of intervals is $n-1$.

And:
$P\left(x_{1}\right)=P\left(x_{2}\right)=\cdots=P\left(x_{n}\right)=0$

As they all are roots of polynomial $\mathrm{P}(\mathrm{x})$.
So, in each interval let's use the Rolle's Theorem, and we'd got a proof.
This Theorem guarantee us one zero of derivative function, but there is nothing said about "one and only one", so we can claim that $P^{\prime}(x)$ "at least $\mathrm{n}-1$ roots".
Q.E.D.

