

Conditions

for non-trivial subspaces U and W of a finite-dimensional vector space V, define $U+W := \{u+w \mid u \text{ element of } U \text{ and } w \text{ element of } W\}$. Prove that $U+W$ is a subspace of V

Solution

Consider a finite-dimensional vector space V with a field P.

U,W – subspaces of V

If we want prove, that $U+W$ is a subspace of V, we must use the Subspace criterion. It claims, that:

Non-trivial set $X \in V$ is a subspace of V if and only if, when:

1. $\forall x, y \in X, x + y \in X$
2. $\forall a \in P, \forall x \in X, ax \in X$

First we must prove, that $U+W$ is in V.

Let's V is a n-dimensional space. Fix a random basis $(v_1, v_2, \dots, v_n) \in V$

As U is a subset of V, then:

$$\forall u \in U, u = a_1 v_1 + a_2 v_2 + \dots + a_n v_n, a_1, \dots, a_n \in P$$

As W is a subset of V, then:

$$\forall w \in W, w = b_1 v_1 + b_2 v_2 + \dots + b_n v_n, b_1, \dots, b_n \in P$$

$$\begin{aligned} u + w &= a_1 v_1 + a_2 v_2 + \dots + a_n v_n + b_1 v_1 + b_2 v_2 + \dots + b_n v_n, b_1, \dots, b_n \\ &= (a_1 + b_1) v_1 + (a_2 + b_2) v_2 + \dots + (a_n + b_n) v_n \end{aligned}$$

So, $u+w$ is an element of V for each u and w , so $U+W$ is in V.

The first condition of the Subspace Criterion is obvious:

$$\forall u_1, u_2 \in U, u_1 + u_2 \in U \text{ (as } U \text{ is a subspace of } V \text{ and the criterion for } U \text{ is correct)}$$

$$\forall w_1, w_2 \in W, w_1 + w_2 \in W \text{ (as } W \text{ is a subspace of } V \text{ and the criterion for } W \text{ is correct)}$$

$$\forall u_1, u_2 \in U, \forall w_1, w_2 \in W, u_1 + w_1 + u_2 + w_2 \text{ is in } U+W, \text{ because } u_1 + u_2 \in U \text{ and } w_1 + w_2 \in W.$$

The second condition of the Subspace Criterion is obvious too:

As U and W are subspaces, then the 2nd condition is correct for them:

$\forall a \in P, \forall u \in U, au \in U$

$\forall b \in P, \forall w \in W, bw \in W$

For $U+W$:

$\forall c \in P, q \in (U + W)$

Consider $c(U+W)$:

$c(U + W) = cu + cw, u \in U, w \in W$

As we know,

$\forall a \in P, \forall u \in U, au \in U$, especially, for $a=c$

$\forall b \in P, \forall w \in W, bw \in W$, especially, for $b=c$

As $cu \in U, cw \in W$, then $cu + cw \in U + W$ (by the definition of $U+W$)

Then the 2nd condition is correct.

Q.E.D.