Conditions

for non-trivial subspaces U and W of a finite-dimensional vector space V, define $U+W:=\{u+w \mid u$ element of U and w element of $W\}$. Prove that $U+W$ is a subspace of V

Solution

Consider a finite-dimensional vector space V with a field P.
U, W - subspaces of V
If we want prove, that $\mathrm{U}+\mathrm{W}$ is a subspace of V , we must use the Subspace criterion. It claims, that:
Non-trivial set $X \in V$ is a subspace of V if and only if, when:

1. $\forall x, y \in X, x+y \in X$
2. $\forall a \in P, \forall x \in X, a x \in X$

First we must prove, that $\mathrm{U}+\mathrm{W}$ is in V .
Let's V is a n -dimensional space. Fix a random basis $\left(v_{1}, v_{2}, \ldots v_{n}\right) \in V$

As U is a subset of V , then:
$\forall u \in U_{s} u=a_{1} v_{1}+a_{2} v_{2}+\cdots+a_{n} v_{n}, a_{1}, \ldots, a_{n} \in P$
As W is a subset of V, then:

$$
\begin{aligned}
& \forall w \in W_{s} w=b_{1} v_{1}+b_{2} v_{2}+\cdots+b_{n} v_{n}, b_{1}, \ldots, b_{n} \in P \\
& \begin{aligned}
u+v=a_{1} v_{1} & +a_{2} v_{2}+\cdots+a_{n} v_{n}+b_{1} v_{1}+b_{2} v_{2}+\cdots+b_{n} v_{n}, b_{1}, \ldots, b_{n} \\
& =\left(a_{1}+b_{1}\right) v_{1}+\left(a_{2}+b_{2}\right) v_{2}+\cdots+\left(a_{n}+b_{n}\right) v_{n}
\end{aligned}
\end{aligned}
$$

So, $u+w$ is an element of V for each u and w, so $U+W$ is in V.
The first condition of the Subspace Criterion is obvious:
$\forall u_{1}, u_{2} \in U_{s}, u_{1}+u_{2} \in U$ (as U is a subspace of V and the criterion for U is correct)
$\forall w_{1}, w_{2} \in W_{s} w_{1}+w_{2} \in W$ (as W is a subspace of V and the criterion for W is correct)
$\forall u_{1}, u_{2} \in U, \forall w_{1}, w_{2} \in W, u_{1}+w_{1}+u_{2}+w_{2}$ is in U+W, because $u_{1}+u_{2} \in U$ and $w_{1}+w_{2} \in W$.

The second condition of the Subspace Criterion is obvious too:
As U and W are subspaces, then the $2^{\text {nd }}$ condition is correct for them:
$\forall a \in P_{s} \forall u \in U_{s} a u \in U$
$\forall b \in P, \forall w \in W_{s} b w \in W$

For U+W:
$\forall c \in P, q \in(U+W)$

Consider c(U+W):
$c(U+W)=c u+c W_{,} u \in U_{s} w \in W$

As we know,
$\forall a \in P, \forall u \in U_{s} a u \in U_{s}$ especially, for $\mathrm{a}=\mathrm{c}$
$\forall b \in P, \forall w \in W, b w \in W$, especially, for $\mathrm{b}=\mathrm{c}$

As $c u \in U_{,} c W \in W$, than $c u+c W \in U+W$ (by the definition of $U+W$)
Then the $2^{\text {nd }}$ condition is correct.
Q.E.D.

