Conditions

let x be a nonempty set and let $f: X-\& g t ; R$ have bounded range in R. if a element R, show that $\sup (a+f(x)$: x element $X)=a+\sup (f(x)$: x element $X)$
and
$\inf (a+f(x): x$ element $X)=a+\inf (f(x): x$ element $X)$

Solution

$$
X \neq \emptyset, f: X \rightarrow R, a \in R
$$

Consider
$\mathrm{s}=\sup (\{a+f(x)\}) \leftrightarrow s \in S_{x} \forall y \in S_{x^{2}}: s \leq y$, where $S_{x}=\{y \in M \mid \forall x \in X: x \leq y\}$
$\forall x \in X, a+f(x) \leq s \leq y$
$\forall x \in X_{,} f(x) \leq s-a$
$s-a$ is a supremum for $\{f(x), x \in X\}$
Consider
$\alpha+\sup (\{f(x)\})=s-a+a=s$, which is $\sup (\{\alpha+f(x)\})$
The same way is how to proof that
$\inf (\{a+f(x)\})=a+\inf (\{f(x)\})$
$\inf (\{f(x)\}=i, \forall x \in X x \geq i, \forall x \in X x+a \geq i+a$
So, $\inf (\{a+f(x)\}=i+a=a+\inf (\{f(x)\})$

