Conditions

Using the definition of the limit at infinity verify that lim $x-->i n f i n i t y \cos ^{\wedge} 2(x) / 2 x^{\wedge} 2=0$

Solution

Consider the function $f(x)$ with a limit, equal to F, when $x \rightarrow$ infinity:
$\forall \varepsilon>0 \exists \delta=\delta(\varepsilon)>0 \forall x:|x|>\delta|f(x)-F|<\varepsilon$
In our case $\mathrm{F}=0$. Let's verify, that the limit is equal to F .
For this let's fix $\varepsilon>0$
$|f(x)-F|=\left|\frac{\cos ^{2}(x)}{2 x^{2}}-0\right|=\left|\frac{\cos ^{2}(x)}{2 x^{2}}\right| \leq\left|\frac{1}{2 x^{2}}\right|<\left|\frac{1}{2 \delta^{2}}\right|=\frac{1}{2 \delta^{2}}<\varepsilon$
$\delta=\sqrt{\frac{1}{2 \varepsilon}}$
We've got, that
$\forall \varepsilon>0 \exists \delta=\delta(\varepsilon)=\sqrt{\frac{1}{2 \varepsilon}}>0 \forall x:|x|>\delta\left|\frac{\cos ^{2}(x)}{2 x^{2}}\right|<\varepsilon$
Q.E.D.

