Conditions

Using the epsilon-delta definition of the limit, prove that if $\lim x-->a f(x)$ and $\lim x-->a g(x)$ exist, then $\lim x-->a[f(x)+g(x)]=\lim x-->a f(x)+\lim x-->a g(x)$.

Solution

Definition. The limit of function $f(x)$ is equal to F (when $x \rightarrow a$), if:
$\forall \varepsilon>0 \exists \delta=\delta(\varepsilon) \forall x:|x-a|<\delta|f(x)-F|<\varepsilon$

Let's write, what means that $f(x)$ and $g(x)$ have limits when $x \rightarrow a$:
$\forall \varepsilon>0 \exists \delta_{1}=\delta_{1}(\varepsilon) \forall x:|x-a|<\delta_{1}|f(x)-F|<\varepsilon$
$\forall \varepsilon>0 \exists \delta_{2}=\delta_{2}(\varepsilon) \forall x:|x-a|<\delta_{2}|g(x)-G|<\varepsilon$
Fix $\varepsilon>0$, consider $\delta=\max \left(\delta_{1} ; \delta_{2}\right)$
$|f(x)-F+g(x)-G| \leq|f(x)+g(x)-(F+G)| \leq|f(x)-F|+|g(x)-G|<2 \varepsilon$
As we can see:
$\forall \varepsilon>0 \exists \delta=\delta(\varepsilon)=\max \left(\delta_{1} ; \delta_{2}\right) \forall x:|x-a|<\delta|f(x)+g(x)-(F+G)|<2 \varepsilon$
This means, that $f(x)+g(x)$ has a limit and it exactly equal to the sum of F and G .
Q.E.D.

