Conditions

Using the definition of the limit at infinity verify that $\lim x --> \inf \operatorname{inity} \cos^2(x)/2x^2 = 0$

Solution

Definition. The function f(x) has a limit, equal to F, when $x \rightarrow$ infinity, if:

$$\forall \varepsilon > 0 \ \exists \delta = \delta(\varepsilon) > 0 \ \forall x: |x| > \delta \ |f(x) - F| < \varepsilon$$

Fix $\varepsilon > 0$

Consider |f(x) - F| for our case:

$$\left|\frac{\cos^2(x)}{2x^2} - 0\right| = \left|\frac{\cos^2(x)}{2x^2}\right| \le \left|\frac{1}{2x^2}\right| < \left|\frac{1}{2\delta^2}\right| = \frac{1}{2\delta^2} < \varepsilon$$

Here
$$\delta = \sqrt{\frac{1}{2\varepsilon}}$$

So, for each ε we found $\delta=\delta(\varepsilon)$, for which $\left|\frac{\cos^2(x)}{2x^2}-0\right|<\varepsilon$

Q.E.D.