Question

With induction:

1) We have: $n=1: 2^{3 \cdot 1}-1=8-1=7$ divide by 7 .
2) Let take that when $n=k: 2^{3 k}-1$ divide by $7 \Rightarrow 2^{3 k}-1=7 m$.
3) And when:

$$
\begin{aligned}
& n=k+1: 2^{3 k+3}-1=8 \cdot 2^{3 k}-1=8 \cdot 2^{3 k}-8+7=8 \cdot\left(2^{3 k}-1\right)+7= \\
& =8 \cdot 7 m+7=7 \cdot(8 m+1) \Rightarrow \text { divide by } 7
\end{aligned}
$$

So, we proved that 7 divides $2^{3 n}-1$.
Answer: Proved.

