Four cards are drawn at random from a pack of 52 cards. Find the probability that this consists of:
a. a king, a queen, a jack and an ace.
b. two kings and two ace all diamonds.
c. two red and two blacks.
d. two clubs and two diamonds

## Solution

The classic definition of probability claims, that the probability of some random event $A$ is equal to a rate of all favorable outcomes for this event to all possible outcomes.
a) The probability of $1^{\text {st }}$ card is a king is $4 / 52$, the probability of the second card is a queen is $4 / 51$, jack $-4 / 50$, ace $-4 / 49$.

This is 4 independent events, and the probability of their occasion at the same time is a product of values above:
$P=\frac{4}{52} \frac{4}{51} \frac{4}{50} \frac{4}{49}=0.000039400375534829316341921383938191$
b) The probability of two kings and two ace - all diamonds - is equal to 0 , as in a card pack there is only one king is diamond and only one ace.
c) The probability of drawing 2 red cards is equal to:

## $\frac{26}{52} \frac{25}{51}$

The probability of drawing 2 black cards after first and second were red is equal to:
$\frac{26}{50} \frac{25}{49}$
The probability of 2 red and 2 blacks:
$P=\frac{2625}{52} \frac{26}{51} \frac{25}{50} \frac{25}{49}=0,065026010404161664665866346538615$
d) The probability of 2 clubs is:
$\frac{13}{52} \frac{12}{51}$

The probability of 2 diamonds after first and second were clubs is:
$\frac{13}{50} \frac{12}{49}$

The probability of 2 clubs and 2 diamonds is:
$P=\frac{13}{52} \frac{12}{51} \frac{13}{50} \frac{12}{49}=0,0037454981992797118847539015606242$

