Conditions

Show that if lim a_n =-infinity, then lim 1/a_n = 0

Solution

The limit of $\left\{a_{n}\right\}=-\infty$ is by the definition means, that:
$\forall \varepsilon>0 \exists N=N(\varepsilon) \forall n \geq N a_{n}<-\varepsilon$
Let's consider the $\lim \frac{1}{a_{n}}$. If we want to prove that the limit is equal to 0 , then we must prove the following:
$\forall \varepsilon>0 \exists N=N(\varepsilon) \forall n \geq N\left|\frac{1}{a_{n}}\right|<\varepsilon$
Fix $\varepsilon>0, \exists N=N(\varepsilon) \forall n \geq N a_{n}<-\varepsilon$.
If $a_{n}<-\varepsilon$ then for big numbers of $n,-\varepsilon<\frac{1}{a_{n}}$, but as $\frac{1}{a_{n}}<0$ and $\varepsilon>0$ then:
$-\varepsilon<\frac{1}{a_{n}}<\varepsilon$
Which is definitely means $\left|\frac{1}{a_{n}}\right|<\varepsilon$
Prove is done.

