Conditions

Given three points $A=(2,-3,4), B=(0,1,2)$, and $C=(-1,2,0)$ in a $3-D$ coordinate systems. Find the area of the triangle with A, B, and C as vertices.

Solution

It's known, that the area of triangle in R^{3} could be found by using the following formula:
$S=\sqrt{S_{x}^{2}+S_{y}^{2}+S_{z^{x}}^{2}}$
where
$S_{z}=\frac{1}{2}\left|\begin{array}{lll}1 & y_{A} & z_{A} \\ 1 & y_{B} & z_{B} \\ 1 & y_{C} & z_{C}\end{array}\right|=\frac{1}{2}\left|\begin{array}{ccc}1 & -3 & 4 \\ 1 & 1 & 2 \\ 1 & 2 & 0\end{array}\right|$
$S_{y}=\frac{1}{2}\left|\begin{array}{lll}x_{A} & 1 & z_{A} \\ x_{B} & 1 & z_{B} \\ x_{C} & 1 & z_{C}\end{array}\right|=\frac{1}{2}\left|\begin{array}{ccc}2 & 1 & 4 \\ 0 & 1 & 2 \\ -1 & 1 & 0\end{array}\right|$
$S_{z}=\frac{1}{2}\left|\begin{array}{lll}x_{A} & y_{A} & 1 \\ x_{B} & y_{B} & 1 \\ x_{C} & y_{C} & 1\end{array}\right|=\frac{1}{2}\left|\begin{array}{ccc}2 & -3 & 1 \\ 0 & 1 & 1 \\ -1 & 2 & 1\end{array}\right|$

Let's calculate it
$S_{x}=-3$
$S_{y}=-1$
$S_{z}=1$
$S=\sqrt{9+1+1}=\sqrt{11}$

