Let *A* be a commutative discrete valuation ring with a uniformizer π (*that is nonzero*) and quotient field *K*.

Consider the ring $R = \begin{pmatrix} A & K \\ 0 & K \end{pmatrix}$, which is right noetherian (but not left noetherian). It is easy to check that

 $J:=\begin{pmatrix} \pi A & K \\ 0 & 0 \end{pmatrix}$

is an ideal of *R*, and that $R/J \sim (A/\pi A) \times K$. Since the latter is a semisimple ring, we have rad $R \subseteq J$. On the other hand, 1 + J consists of matrices of the form

$$\begin{pmatrix} 1+\pi a & b \\ 0 & 1 \end{pmatrix} (a \in A, b \in K),$$

which are clearly units of *R*. Therefore, $J \subseteq \operatorname{rad} R$. We have now $J = \operatorname{rad} R$, from which it is easy to see that $\begin{pmatrix} \pi^n A & K \end{pmatrix}$

$$(\operatorname{rad} R)^{\wedge} n = \begin{pmatrix} n & n \\ 0 & 0 \end{pmatrix}$$

for any $n \ge 1$. It follows that $\bigcap_{n\ge 1} (rad R)^n = \begin{pmatrix} 0 & K \\ 0 & 0 \end{pmatrix} \neq 0$.