
Let A be a commutative discrete valuation ring with a uniformizer π(that is nonzero) and quotient field K. 

Consider the ring R =
0

A K

K

     
, which is right noetherian (but not left noetherian). It is easy to check that  
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is an ideal of R, and that R/J ∼ (A/πA) × K. Since the latter is a semisimple ring, we have rad R ⊆ J. On the other 
hand, 1 + J consists of matrices of the form 
1
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a bπ +     
(a ∈ A, b ∈ K), 

which are clearly units of R. Therefore, J ⊆ rad R. We have nowJ = rad R, from which it is easy to see that  
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for any n ≥ 1. It follows that ( )
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