

Conditions

Indefinite limit problem:

Show that If $a_n < 0$ and $\lim a_n = 0$, then $\lim 1/a_n = \text{negative infinity}$.

Solution

Let's show that $\lim \frac{1}{a_n} = -\infty$ by using a definition:

$$\lim x_n = -\infty \Leftrightarrow \forall \varepsilon > 0 \ \exists N = N(\varepsilon) \ \forall n \geq N \ x_n < -\varepsilon$$

Fix $\varepsilon > 0$

Let's find $N = N(\varepsilon)$: $\forall n \geq N \ \frac{1}{a_n} < -\varepsilon$

As we know, $\lim a_n = 0$

$$\forall \varepsilon > 0 \ \exists N' = N'(\varepsilon) \ \forall n \geq N' \ |a_n| < \varepsilon$$

As we know, $a_n < 0 \ \forall n \in \mathbb{N}$. So, we can remove the modulo in the next way:

$$\forall \varepsilon > 0 \ \exists N' = N'(\varepsilon) \ \forall n \geq N' - a_n < \varepsilon$$

$$a_n > -\varepsilon,$$

$$\frac{1}{a_n} < \frac{1}{-\varepsilon} = -\varepsilon'$$

As this is true $\forall \varepsilon > 0$, so $\varepsilon' = \varepsilon$. Here $N = N + 1$ (bigger than N' for at least 1).