

Gravel is being dumped from a conveyor belt at a rate of 30 cubic feet per minute. It forms a pile in the shape of a right circular cone whose base **diameter and height are always the same**. How fast is the height of the pile increasing when the pile is 10 feet high? Recall that the volume of a right circular cone with height h and radius of the base r is given by $V=1/3 \pi r^2 h$.

The volume of a right circular cone with height h and radius of the base r is given by $V=1/3 \pi r^2 h$.

“diameter and height are always the same”, then $h=d \rightarrow d=2r \rightarrow r=h/d$.

$h=10$; $r=5$;

$$V=1/3 \pi r^2 h \rightarrow V=1/3 \pi (5^2) * 10 = 261.66$$

The average velocity v of an object moving through a displacement Δs during a time interval Δt is described by the formula:

$$U=\Delta s/\Delta t \rightarrow s=v;$$

30 – 1 minute ,

261.66 – x minutes

$$X=(261.66*1)/30=8,722 \text{ (minutes).}$$