

Assume otherwise. Then R has no nontrivial ideals, so it is a simple ring. Having only a finite number of left ideals, R must also be left artinian. Therefore, by Wedderburn's theorem, $R = Mn(D)$ for some division ring D , where, of course, $n \geq 2$. If $n \geq 3$, it is easy to produce (by column constructions) more than seven nontrivial left ideals in R . Thus, we must have $n = 2$. In this case, consider the map $\alpha : \{\text{lines through 0 in } (D^2)_D\} \rightarrow \{\text{nontrivial left ideals in } R\}$, defined by taking annihilators. Using linear algebra in the plane, we check readily that α is a 1–1 correspondence. Therefore, the number of nontrivial left ideals in R is $|D| + 1$. Thus, we have $|D| = 6$, which is impossible!

Two obvious examples of the rings R under consideration are the commutative rings $\mathbb{Z}_4 \times \mathbb{Z}_4$ and $\mathbb{Z}/2^8\mathbb{Z}$. For a noncommutative example, consider the ring $R = \begin{pmatrix} k & k \\ 0 & k \end{pmatrix}$, where k is a finite field. One computes that R has exactly $|k| + 3$ nontrivial left ideals, so taking $k = \mathbb{F}_4$ gives what we want.