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c a c∑  then i j j i ijx x x x a′ ′ ′ ′ ′− = , and we have A' = CACT where A = (aij) and A' = (a'ij ), and “T” denotes 

the transpose. Therefore, we are free to perform any congruence transformation on A. After a suitable congruence 

transformation, we may therefore assume that A consists of a number of diagonal blocks 
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    − 
, together with a 

zero block of size t ≥ 0. If t > 0, then det(A) = 0, and xm generates a proper ideal in R. If t = 0, then det(A) <>  0 
and m = 2n for some n. Here, R is the nth Weyl algebra An(k). Since k has characteristic zero, R is a simple ring. 
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