

Conditions

Consider a number a in the Reals with $a>0$ and n in the Naturals. Show that there exists a unique x in the Reals such that $x^n=a$

Solution

$$x^n = a$$

This is an arithmetical N -th root **by the definition**. A real number or complex number has n roots of degree n .

$$x = \sqrt[n]{a}$$

This function has an unique values for all $a>0$, that's why for each fixed a exist one and only one x : $x = \sqrt[n]{a}$.