

Conditions

for which value of k does the following pair of equation yield a unique solution for x such that the solution is positive $x^2 - y^2 = 0, (x - k)^2 + y^2 = 1$

Solution

$$\begin{cases} x^2 + y^2 = 0 \\ (x - k)^2 + y^2 = 1 \end{cases}$$

1st minus 2nd:

$$x^2 - (x - k)^2 + y^2 - y^2 = 0 - 1$$

$$x^2 - x^2 + 2kx - k^2 = -1$$

$$2kx - k^2 = -1$$

If $k = 0$, then $x \in R$. If $k \neq 0$, then

$$x = \frac{k^2 - 1}{2k}$$

As x has a first power, this means that the solution is unique.

To find a positive solution for x , we must construct the inequality:

$$\frac{k^2 - 1}{2k} > 0$$

$$\frac{(k - 1)(k + 1)}{2k} > 0$$

It's obvious, that the $k \in (-1, 0) \cup (1, \infty)$

Answer: $k \in (-1, 0) \cup (1, \infty)$