

(1) Let $R = k\langle x, y \rangle$ and $A = xR$. For $r \in R$, we have $r \in IR(A)$ iff $r \cdot x \in xR$. Writing $r = r_0 + r_1$ where r_0 is the constant term of r , we see that $r \cdot x = r_0x + r_1x \in xR$ iff $r_1 \in xR$.

This shows that $IR(A) = k + xR$, from which we get $ER(A) = (k + xR)/xR \sim k$.

(2) Let $R = \mathbb{Z} \oplus \mathbb{Z}i \oplus \mathbb{Z}j \oplus \mathbb{Z}k$ and $A = xR$, where $x = i + j + k$. Since $x^2 = -3$, we have $3R \subseteq xR$. Writing “bar” for the projection map $R \rightarrow \bar{R} = R/3R$, we check easily that the right annihilator of x in R has 9 elements. Since $|\bar{R}| = 3^4$, it follows that

(*) $[R : xR] = [\bar{R} : x\bar{R}] = 81/9 = 9$.

Now xR is not an ideal in R , so we have $R \supset IR(xR) \supseteq xR + \mathbb{Z} \supset xR$.

From (*), we see that $IR(xR) = xR + \mathbb{Z}$, and $ER(xR) = IR(xR)/xR \sim \mathbb{Z}/3\mathbb{Z}$.