First suppose m is a square in R. Then

$$(*) mI = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} a^2 + bc & b(a+d) \\ c(a+d) & d^2 + bc \end{pmatrix}$$

for some *a*, *b*, *c*, $d \in \mathbb{Z}$ with $n \mid b$. Therefore, $m = a^2 + bc \equiv a^2 \pmod{n}$. Conversely, if $m \equiv a2 \pmod{n}$ for some *a* $\in \mathbb{Z}$, then $m = a^2 + nc$ for some *c*, and (*) holds with b = n and d = -a.