Define $\beta: R \rightarrow R$ by
$\beta\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)=\left(\begin{array}{cc}a & n c \\ b / n & d\end{array}\right)$.
A direct calculation shows that β is an involution on R. An involution γ on S can be defined similarly. Now consider the transpose map $t: R \rightarrow S$, which is an anti-isomorphism. By composing $R \xrightarrow{\beta} R \xrightarrow{t} S$, we obtain an isomorphism $\alpha^{\prime}: R \rightarrow S$ given by
$\alpha^{\prime}\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)=\left(\begin{array}{cc}a & b / n \\ n c & d\end{array}\right)$.

