Label the elements of *R* as x_1, x_2, \ldots, x_k . Since there are at most *k* distinct elements in the set $\{x_1, x_1^2, \ldots\}$, there must exist

Index even that $r_1 < r_2 < \cdots$ such that $x_1^{r_1} = x_1^{r_2} = \cdots$. By considering $\{x_2^{r_1}, x_2^{r_2}, \dots\}$, we see similarly that there exist a subsequence $s_1 < s_2 < \cdots$ of $\{r_i\}$ such that $x_2^{s_1} = x_2^{s_2} = \cdots$.

Repeating this construction a finite number of times, we arrive at a sequence $n_1 < n_2 < \ldots$ such that

 $n_1 < n_2 < \dots$ such that $x_i^{n_1} = x_i^{n_2} = \cdots$ for $1 \le i \le k$.