
Changing notations, we write here A = A/A · (x4 + 1). Define ϕ : A →M(2,C) by  
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ϕ gives a ring homomorphism from A to M(2,C). Again, ϕ induces a ring homomorphism ϕ : A → M(2,C), 
since 

ϕ( 4x  + 1) =

4 2
0 0

0
1 0 0

i i
I I

i

       + = + =        
 

By a straightforward computation, for ,k kb c  ∈ R: 
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Clearly, this is the zero matrix only if all ,k kb c = 0. Therefore, ϕ is one-one. Since φ  is an R-homomorphism and 

both A and M(2,C) have dimension 8 over R, it follows that φ  is an isomorphism. 
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