

Since $x^2 + 1 \in Z(A)$, $A \cdot (x^2 + 1)$ is an ideal, so we can form the quotient ring $A = A/A \cdot (x^2 + 1)$.

Expressing the ring of real quaternions in the form $H = C \oplus Cj$, we can define $\varphi: A \rightarrow H$ by $\varphi(x) = j$, and $\varphi(a) = a$ for all $a \in C$. Since $ja = \sigma(a)j$ in H for any $a \in C$, φ gives a ring homomorphism from A to H . This induces a ring homomorphism $\bar{\varphi}: \bar{A} \rightarrow H$, since $\varphi(x^2 + 1) = j^2 + 1 = 0$. In view of $\bar{\varphi}(\bar{a+bx}) = a + bj$ (for $a, b \in C$), $\bar{\varphi}$ is clearly an isomorphism.