

Suppose we have already constructed n distinct right inverses b_1, \dots, b_n for a . We shall show that there exist at least $n + 1$ distinct right inverses for a . Indeed, consider the elements $c_i = 1 - b_i a$ ($1 \leq i \leq n$), which have the property that $a c_i = a(1 - b_i a) = 0$. If $c_i = c_j$, then $b_i a = b_j a$, and right multiplication by b_1 shows that $b_i = b_j$. This shows that c_1, \dots, c_n are distinct. Also, each $c_i \neq 0$, since a has no left inverse. Therefore, $\{b_1, b_1 + c_1, \dots, b_1 + c_n\}$ are $n + 1$ distinct right inverses for a .