

Consider any nonzero element $b \in A$, and let $a_n b^n + \dots + a_m b^m = 0$ ($a_i \in k$, $a_n \neq 0 \neq a_m$, $n \geq m$) be a polynomial of smallest degree satisfied by b . If $m = 0$, then, for $d = a_n b^{n-1} + \dots + a_1$ we have $db = bd = -a_0 \in k^*$. In this case, b is a unit in A . If $b \in B$ and b is a unit in A , the above also shows that $b^{-1} = -a_0^{-1}d \in k[b] \subseteq B$