

Fix an integrality equation $x^{n+1} + a_n x^n + \dots + a_0 = 0$, where $a_i \in R$, and pick a non 0-divisor $r \in R$ such that $rx_i \in R, 1 \leq i \leq n$. Consider the f.g. ideal $I = \sum_{i=1}^n Rrx^i$ in R . By hypothesis, ${}_R I$ is projective, so by the Dual Basis Lemma, there exist linear functionals $f_i : I \rightarrow R$ such that $b = \sum_{i=1}^n f_i(b)rx^i$ for all $b \in I$. Now from the integrality equation, we have $rx^{i+1} \in I$, so we can write

$$rx = \sum_{i=1}^n f_i(rx)rx^i = \sum_{i=1}^n f_i(r^2x^{i+1}) = r \sum_{i=1}^n f_i(rx^{i+1})$$

Cancelling r , we conclude that $x = \sum_{i=1}^n f_i(rx^{i+1}) \in R$.